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Uncoupled dual formulations (UDFs) , different from those considered previously [l-3], are proposed for 

the boundary functionals of the linear theory of elasticity, in the sense that the displacements and stresses 

are varied independently, and the equations of state on the boundary are treated as constraints involving 

Lagrange multipliers. The idea of this device-using Lagrange multipliers to get rid of restrictions in the 

variational problem, represented by the equations of state-was used previously [4] to formulate dual 

variational problems of the linear theory of elasticity based on the Lagrange-Castigliano principle. A finite 

element approximation of the solutions of these problems yields mixed formulations of the finite element 

method [5]. Thus, the boundary element approximations (BEAs) proposed below for the UDF may be 

regarded as a special mixed finite element method. Simultaneous BEA of the displacements and stresses 

extends the applicability of UDFs to cases in which allowance must be made for singularities of the solution, 

e.g. in contact problems of the theory of elasticity and in fracture mechanics (crack problems). 

1. LET G C E,,, (m = 2, 3) be a region in a (possibly infinite) elastic medium with sufficiently smooth 
boundary S. The problem of minimizing the quadratic energy functional for the second boundary- 
value problem of linear elasticity theory (with given stresses on S) may be reduced [6] to the 
equivalent problem of minimizing a boundary functional over the kinematically admissible 
displacements 

minFs(u), Fs =Jut(“)(u)ds -2J&‘)dr 
uED s s (1.1) 
D= lul Au(x)=O,xEGj 

Body forces are not taken into consideration; g(“)(y), y ES, is the vector of given normal stresses on 
S; the set D of displacement vectors that satisfy the equation of equilibrium of the elastic medium is 
the set of linear constraints of the variational problem. A solution of problem (1.1) exists, apart 
from an arbitrary rigid displacement. Under conditions that exclude such a displacement we have [6] 

min Fs(u)=Fs(uo)=& =-JuOt(“)(u,,)ds 
uED s 

where u. is the vector of elastic displacements-the solution of the second problem of the theory of 
elasticity. Problem (1.1) is “coupled” in the sense that the variables-the displacement vector u and 
the stress vector on the boundary t (“)--must satisfy the defining relations 

P)(U) = l2 C~~~r(X)E,rcoS(V, Xj) xy 
i, k.1.r 

(1.2) 

We will henceforth study an “uncoupled” formulation, with these relationships maintained valid 
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as constraint equations through the use of Lagrange multipliers. We shall first prove a duality 
relation (not the same as that previously established [6] for coupled formulations). 

Let T be the set of boundary values of the statically admissible stress vectors. We define Lagrange 
multipliers as sufficiently smooth vector functions A defined at the points of S and such that the 
real-valued function 

f(u, 0, A) = j- h[P) - t(p)(U)]ds, ue:I), t@) f T (I-3) 
s’ 

satisfies the equality 

supJ(u, t(Y), h) = I ** 
t(V) = t(“)(@ 

+m, d”) #d”)(U) 

This is established by a direct check, and the function f is used to construct the Lagrangian 

Qu, tf”), X) =w(u, t’“‘) - 21(u) -f(u, t(V), X) 

w =sJut(%s, I = ~ug~V)~s 
(1.4) 

s 

(later we shall suggest an interpretation of the multipliers A). It can be shown that the problem of 
finding a saddle point {u”, t(@ (uo), ho} of L, that is, the direct problem 

inf. 
“J(V) 

sup ?J 

is equivalent to the variational problem (1.1). Indeed, if 6”) = t(* (u), then sup,f = 0 and 

Inf 
u,&“)(u) 

sup&l(u, t(“)(u), h) =inf,Fs(u) =& 

The dual problem, to determine 

SuPA hf” ,(J 
, 

(1.5) 

(1.6) 

is meaningful if the duality relation holds 

inf 
u,t@) 

sup& = sup,inf 
u,t v) 

f L=do. (I-7) 

Thus, we have to prove the right-hand side of (1.7). For fixed A, the solution (uA, tl”‘f of the 
problem of finding inf,,+& is determined from the system of equations 

grad,L(uA, tr), X)=0 

grad&v, L(u*, t$“‘, A) =o 

which, in view of (1.4), can be written in the form 

W(V&f) -21(v)+ Jht(Yf(v)ds= 0, yvED 
s 

(1.8) 

w(uA, +) - &t+‘)ds = 0, V ,f”) E T (1.9) 
s 

Under these conditions the value of L for the solution (u,, 6”)) is obtained from the explicit 
expression for L and from (1.8) with v = II,+ and (1.9) with ~(4 = t,$y’ 

L(u,, ti”“, A) = -_I-Xt(“)&)ds - ~ht~)ds + iAt( = 
s s 
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Then the dual problem (1.6) reduces to 

sl.lp*[-w(uh, Q’)] =-inf~w(llh, ti!‘) 

where w(uh , t,$“) is a quadratic form in A. Next, we deduce from the condition 

gradhL(u, t(“), X) =_f&[t(“) -t(“)(u)]& =O V6 ED (1.10) 
s 

that t,$fy) = t(“‘(u,+) for every fixed h. Hence it follows that for h = ho and u,+,, = uo, 
t’*‘(u,$ 0 ) = t(~(~) 

-inf,w(uh tp’) = -wfuo, t(~)(u~)) =& , 

These results, together with (fS), prove (1.7). 
Relationships (1.9) and (1.10) may be considered, first, as integral identities, in which case the 

first implies an interpretation of the Lagrange multiplier ho = u c--the vector of elastic displace- 
ments; the second relationship implies the satisfaction of the coupling equations 6”) = t(4(u0). 
Alternatively, the same relationships may be regarded as variational equations which, together with 
equation (1.8), may be used to construct BEAs of the solution of the dual problem (1.6). By what 
we have already proved, the infima inf,,t+), sup, in (1.7) are attained; hence they may be written 
instead as min,,s+l, maxA. The minimum smoothness conditions for the variables of these dual 
formulations are essentially membership conditions: u, hE Wi’2(S), t(*E W;-‘“(S), where Wi’z(S) 
is the appropriate Sobolev~lobodetskii space and &r’*(S) is its dual. 

2. The saddle point {uo, t(“)(Q), ho} of the Lagrangian L, whose existence follows from (1.7), is 
characterized by the condition [7] 

L&J, tquo), A)< Lh, t’“‘Q4d, &I) = 

=d(j ;s L(u,t (“), ho), vu, t(“), x 
(2-l) 

To satisfy (2.1) we must solve the system of variational equations (1.8)-(1.10); there are different 
possible kinds of BEA: isoparametric, superparametric and subparametric [S]. 

From now on we shall consider a homogeneous isotropic medium occupying the region G. 
Suppose we have isoparametric approximations of the boundary and of the variables u, t(*, A at the 
points of a boundary element (BE) As, (the boundary S is divided into such elements) 

yn = r: yq/k, 
nk 

u, =c u(‘)J/, 
ih i,k nk 

t” 
(“’ = FkTn’;)$k, h, = ,:^$tik 

(2.2) 

Here YEi are the Cartesian coordinates of the nodes k of the discrete boundary SA = Ubs, (n = 1, 
. . .) W, and CA, Tnk7 Ank are the nodal values of the respective variables; &(n) are the basis 
functions of the BEM [S] and n is the local coordinate of the points of ds, . Summation in (2.2) is 
performed from i = 1 to i = m and from k = 1 to k = K. 

Global interpoIating functions u&y,& thW’(yA), h,v(ya) at points y&ES& are obtained by 
summing (2.2) over n = 1, . . . , N. As the nodal vafues are equal at common nodes of adjacent 
elements (by the compatibility condition for BEs f8]), the functions thus obtained are continuous at 
the points of SA. Functions approximating the solution at the points of the region GA bounded by S, 
may be derived from the boundary values uN_ t&%) as superpositions of boundary potentials ([ 1, 21, 
see also [9]) 

q$r(x*) = - ;,j P’( z V1’)UN(y*)ds(y*) + 
A i=1 

( + !_ J ; ,4itN”A 
2s,i=r 

‘( Y&fs( Yah xA E Go. (2.3) 
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where {u”} i, j = 1, . . . , m is the tensor of fundamental solutions of the Lame equations (the 
Somigliana tensor [lo]). 

The representation (2.3), which is known [ll] to be rigorous for piecewise-smooth boundaries Sh, 
associates the same vector function with uncoupled boundary values UN, tp): the solution of the 
Lame equation in the region inside (and outside) Sa. Thus, the functions 

are admissible functions of the finite-dimensional variational problem for the discrete Lagrangian 

‘!‘h (UN, tfY”‘, AN). Applied t0 the approximations {UN}, {tfY”‘}, {AN}, the Variational equations 

(1.8)-(1.10) reduce [l, 21 to the following system of discrete boundary equations 

(2.4) 

The integration here is performed over the union of the BEs AS,, for which the node k [see (2.2)] is 
common; we have used the following notation (see also [9]): 1 .I, 1 is the determinant of the Jacobian 
of the transformation of a surface element ds, (7)) in local coordinates to a surface element ds,, ( y) in 
global (Cartesian) coordinates; g;l”’ is a BEA (2.2) for the given vector g(“) [see (l.l)], vn is the 
outward normal at points of Ass, ; c (8, p) is a constant, which depends on the Lame constants, which 
appears [9] on passing from the approximation u, [see (2.2)] to the stress vector approximation 
t(Y) (II,). In simple cases, such as twisting of a homogeneous elastic rod, we have [9] 6”) (u,) = 2paUn/ 
av; in the general case the operator cd/au is equivalent to a certain scalar operator, whose actual 
form is determined [9] by the vector tcY)(u,) [see (1.2)]. 

Let us compare the approach proposed here with the Ritz BEA of coupled variational formulations [ 1,2,9]. 
Unlike the Ritz procedure, where the gradient of a discrete functional corresponds to differentiating a 
quadratic form in the parameters (the unknown nodal values), here the gradient corresponds to differentiation 
with respect to parameters that appear linearly in the discrete Lagrangian LA. Thus, the first equation in (2.4) 
corresponds to gradunk LA = 0 (U,, is a vector) and is expressed in terms of the parameters Tnk , Ank ; the second 
and third equations correspond to gradTnk LA = 0 and grad,,nkLb = 0 and are expressed in terms of the 
parameters Unk , Ank and T,,k , Unk , respectively. It follows that the variational equations (1.8)-( 1.10) may also 
be regarded as equations for the construction of a BEA “a la Galerkin” (see [S]). 

We shall now show that system (2.4) is identical with the system of discrete boundary equations of 

the BEA in the case of problem (1. l), when evaluated for the Ritz approximations {UN} (1, 2, 9). 
The analysis runs as follows. Using the third equation of system (2.4), eliminate the first term from 
the first equation. The resulting system of two equations is fairly easy to analyse: the second 
equation implies uN’AN, in agreement with the established fact that the Lagrange multipliers are 
simply the displacement vectors. Considering the BEA 

P”)(u,) = ,zl ,xc, u~;)c(e, /.A) p 
-_ 

” 

the symmetry condition satisfied by the matrix coefficients of the BEM [ 1,9] 

and also the equality Unk = A,k (as a corollary u, = h,), we deduce from the first equation that 
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n=l UAs, i-1 k=l 

= 2 g I 2 5 Q,'~~kJ/,IJ,,Ids,(~). I= I,..., K (2.5) 
n=l UAs, I=1 k=l 

which is just the system of discrete boundary equations for the BEA of problem (1.1). 
In connection with this uncoupled variational formulation for boundary functionals of the theory of 

elasticity, it should be mentioned that in the linear theory of elasticity one also has occasion to deal with 
functionals in which the displacement and stress variables may be varied independently, such as the 
Hellinger-Reissner functional. Variational formulations for this functional have been used as a basis [5] for 
mixed finite-element approximations of solutions to dual problems. Uncoupled formulations and an appropri- 
ate duality algorithm for their implementation may also be based on minimizing generalized Trefftz functionals 
of boundary-value problems of the linear theory of elasticity. Such an algorithm and a variational-difference 
scheme for its implementation may be found in [12]. 

3. We will now proceed to justify the algorithms for constructing BEAs. It can be proved that if 
SA-+ S as N+ m (diamhs, + 0) (or if SA = S, in the conformal finite element method [5]), then (uN, 
thm))+ [ug , $9 (IQ,)] in the sense that 

~u~-ucl~l/,g+o’ nt,“aj-t(Y)(u,)ll_H,~~O (3.1) 

where the normi. 1 1,2,s is defined in the subspace W~1’2(S) C W:/2(S) on which the boundary 
quadratic form [6] (u, t(“)(u)) is positive definite and 

IUIM,S= {(u,P)(u))l” 

For the proof, we use the variational equation (1.8) as an integral identity (with integrals over S,) for 
v=u-uO,h=Aoandforv=u-uN, A = A~, obtaining two equalities. Noting that, by (l.lO), when 6 = AN 
and 6 = A0 we have tim) = tc”)(uN) and t!$ = t(“)(uO), respectively, we set u = UN, tiz) = tcM)(uN) in the first 
equality and u = UO, t$ = tc9(uo), . In the second, and then add the resulting equalities. This gives 

WA@, - uj,,’ t (v) (u,) - t 
(VA) 

(II,>, = s (a, - AN)[dV)(“,) - t@A)(u ))ds 

S A 
N A 

If SA+ S (or S, = S), the right-hand side of this equality vanishes by (1.10) if 6 = A0 - AN, and the left-hand 
side is equal to 1% - u~$~,~. Consequently, the first convergence relation in (3.1) is indeed valid. Similarly, 
considering the variational equation (1.9), one can establish the second convergence relation in (3.1); 
alternatively, it follows from the estimate of the Trace theorem [S] if the first convergence is satisfied. The 
reader should note that this technique of proving convergence is to some extent standard; it has been used [13] 
to justify a duality algorithm for solving the generalized Signorini problem. 

To estimate the error of the BEA, it is natural to use a posteriori error bounds, based on 
two-sided estimates of the functional L(uO, tcY)(uo), A,). Such estimates turn out to be identical with 
those obtained previously [6] for coupled approximations. 

In (2.1) we set u = uN, tcY) = tcYA)(uN), A = AN and form the difference of functionals 

LA@,, t ‘vA’($r), b) - LA@o, @$b), A&‘) (3.2) 

(the index A indicates expressions with integrals over S *, and uOA, hoA are the values of u. , A0 at 
points of SA). Considering that the coupling equations (1.3) are satisfied by both exact and 
approximate solutions, so that fA(ug, tv(b), AN) = 0, fA(u~, fcm)(uN), ho) = 0 and using the 
expression (1.4) for the Lagrangian, we see that the difference (3.2) is equal to the difference of 
boundary functionals [see (1. l)] 

FsA(UN)-FSA(UO)=WA(UN) -WA@O)-~~@N -Ug) (3.3) 

where WA (UN) = WA [UN, t (“)(~N) J, with a similar expression for WA(b). 
We will now use the variational equation for Fs,(uo) [see (l.l)], from which it follows that 

lA(uN-UO) = wA(b, u N - ~0). Then the difference (3.3) may be written in the form 
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To obtain an a posteriori bound, we now use a lower bound [6] for the functional FsA (UC,) in terms 
of the functional @)S,[t(w)(~N)] of the dual coupled problem. This gives 

1 ‘N -% IR,,, =G F&&v) - Q*(t (“A’(uN)) 
Here the right-hand side may be reduced to a form that is more convenient for calculations [6] 

2 I uN [tCuA)(uN) - g;A)]dsA 
SA 

4. We will now consider some questions concerning applications. Previously proposed variational formulae 
of the BEM [l, 21 use the apparatus of discrete boundary potentials to approximate the solutions of the direct 
problem (in displacements) or the dual problem (in stresses), in which case these approximations are 
interdependent because of the defining relations (1.2) at the points of the discrete boundary. The formulations 
proposed here use a simultaneous uncoupled approximation of the solutions of the direct and dual problems. 
Thus, one can approximate the stress field at the points of the discrete boundary, independently of the field of 
displacements, in the following sense: if the problem setting involves making allowance for the increase of the 
stresses on some set of boundary points (e.g. at singular points of the contact of a rectangular-faced punch with 
a deformable medium), then the approximation of the boundary in the displacement field may be 
isoparametric, but the approximation in the stress field may be subparametric (with a large number of 
interpolation nodes). A similar approximation may be adopted to allow for the increase in stresses in the 
neighbourhood of the tips of a crack in crack problems (a variational formulation has been pointed out for the 
boundary functionals of these problems; see R. V. Gol’dshtein’s appendix in [14]). The alternative, 
superparametric BEA is used in problems in which the approximation must make allowance for irregularities of 
the boundary. In both cases the number of nodes in the approximations of the boundary and the solution may 
be equal, but the order of system (2.4) depends on the number of approximation nodes of the solution, and the 
integral coefficients of the unknown nodal values of the displacements and the stresses are determined from 
basis functions of different orders. 

Let us look more closely at the structure of the system of discrete boundary equations in the subparametric 
approximation; this is the case of interest in the applications mentioned above. Let {k}l,...,K, {k}l.,,,,K’ be the 
sets of interpolation nodes at the points of the BEs As,, (n = 1, . , N), respectively, for interpolation of the 
displacement vectors u,(h,) and stress vectors tilh) from their nodal values Unk = {~~b}i=l,,,.,m and 
Tnk = {T~~}i~l,,,,,,; let &, kE {k}, I,&, kE {k}’ be the corresponding basis functions of the BEM (in general 
of different orders in 7). If K# K’, system (2.4) may be written in the form 

(4.1) 

n+l UAsn iql k, I=1 

and the matrix of the system has variable band width. In the isoparametric approximation we have {k} - {k} ’ , 
&-$b, and system (4.1), as shown previously, reduces to (2.5). For the case K’> K and {k}‘> {k} (i.e. 
additional interpolation nodes are considered for the stress field), using the equalities 

(4.2) 

(the second of which represents the validity of the defining relations for the nodal values of the displacements 
and stresses on the set {k} of interpolation nodes of the Lagrange multipliers), we can reduce the solution of 
system (4.1) to the solution of a system of discrete boundary equations in the components of the nodal stresses 
T$g 
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(4.3) 

where Q$i are the nodal values of the components of the stress vector g(“) [see (1. l)]. 
The justification of the a priori given defining relations (4.2) follows from the fact that if the first term of 

system (4.3) is substituted into the third equation of system (4.1), and allowance is made for (4.2) and the 
symmetry of the coefficients of the boundary element system (see above), we obtain a system whose right-hand 
side includes the contributions of the nodes kE {k}‘; restriction of the right-hand side to the set of nodes {k} 
yields a system corresponding to system (2.5) for a coupled BEA, whose solution implements the defining 
relations (4.2). After using (4.3) to determine the values of 7’$ on the set {k}‘, the values of U$, i = 1, . . . , m 
on {k} are determined using the third equation of system (4.1). 
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